TREBAKE HB59% H17% (202147 H) pp. 53-65

(i

i)

DiffMA: A Lossy Encoding of Motion Capture Data for JSON

Take-Yuki NAGAO

1. INTRODUCTION

This paper aims to provide a mathematical method for eliminating redundancy
from the recorded motion capture data and making it possible to store various high-
frequency floating point data efficiently in JSON (JavaScript Object Notation) format.
In general, motion capture data consist of skeletal information describing the structure
of human bones and time series information representing the transformation matrices
for skeletal motion. The time series data are lists or arrays of floating point numbers.
When transmitting motion data over the network, these floating point numbers need
to be encoded efficiently.

To this end, a lossy compression algorithm named DiffMA is proposed below to
encode and decode an arbitrary list of floating point numbers into a list of opcodes
suitable for ASCII representation. The proposed algorithm is intended for the real
number field, which is essential for mathematical theories, and for floating point num-
bers, which are more complicated but required for implementing applications.

2. DIFFMA ALGORITHM

2.1. Redundancy of a list. Given a list = [z;] indexed by a set of non-negative
integers, a typical redundancy occurs when the element x; is constant for all j. If we
know beforehand that z; is constant, we can encode x as the single value xy. Similarly,
if x; is linear in j, viz. x; = aj + 7 for some « and v, then we can encode x as the
list [zp,x1]. This paper aims to automate this kind of encoding by an algorithm that
is implementable by computers.

When we use natural languages, we may encode a constant list [xo, zo,...,zo] of
length N as ([zo], knowledge; ), where

knowledge; = “the original list is constant and has length N”,
and a linear list = = [z;] as ([zo, z1], knowledges), where
knowledges = “the original list is linear and has length N”.

It is hence reasonable to find a method to encode a given list x as a tuple (¢, b) of sublist
t of x and some data b representing additional knowledge about the original list z. For
the constant case, t = [x¢] and b = knowledge;. For the linear case, t = [z, z1] and
b = knowledges. A non-trivial problem is to find a representation of the knowledge b
as a mathematical object that is implementable by computers. The main idea of this
paper is to design a simple set of opcodes to represent the knowledge b as a list of
opcodes. We refer to the sublist ¢ as a look-up table, which contains some of the exact
values of the original list. Our goal is to minimize the size of the look-up table for a
space-efficient representation of the original data.

Date: 20 May, 2021.



TEEAKE H£59% H£1%5 202147H)

2.2. Designing Opcodes. This paper focuses on creating a lossy compression algo-
rithm that takes an arbitrary list [x;] of real numbers as input and outputs a list of
opcodes listed in Table 1 along with a look-up table.

TABLE 1. List of Opcodes

Opcode Meaning

EQL Repeat the last exact value.

NEG Flip the sign of the difference of the list.

APX(q)  Approximate the value using the quantized value gq.
RAW Load the raw value from the look-up table.

We now discuss how to encode a given list efficiently by using the above opcodes.
For inferring knowledge, such as constancy and linearity, from a given list z = [z;] of
real numbers, it is natural to look at its difference =11 —x; (for j =0,1,2,...) and
check if it is constant for all j. However, this approach has a disadvantage because it is
hard to reconstruct the original list [z;] from its difference [z;11 — z;] due to rounding
errors when we use floating point numbers. Errors in the difference for multiple j’s
may accumulate to make a significant difference to the reconstructed values obtained
by summation — the reconstructed value in this paper means the value obtained by
decoding the encoded value.

To mitigate the above type of errors, we will slightly modify the definition of the
difference. When we have encoded the list [z;] up to the element z;, we decode the
last encoded value. We refer to the reconstructed value as x’;, which might be different
from x; due to rounding errors. When encoding the next value x4, we encode the
difference ;11 — 2 instead of encoding x;4+1 — x; directly. The point is that the exact
value of x; is available at the decoding side and the encoding side, while the precise
value of z; may not be available when decoding.

To test if the input list [x;] is constant near j, we have to check if the modified
difference x4 — m; is zero or not. If it is zero, the encoder records the opcode EQL,
which tells the decoder that the next value is identical to the last reconstructed value.
In this case, we set 2/, = /.

Observe that the difference x”;, | —’; of the reconstructed values is shared among the
encoder and the decoder, and also that any quantity derived from a:; 11 —96;- has similar
characteristics. Since we intend to encode motion data captured in high-frequency, the
absolute difference |2/ ; — | tends to be small statistically, and its distribution is
expected to concentrate around the origin. As we will see below, the moving average
of [#%,, — a}| with fixed window size helps to encode the difference efficiently. We
write m; to denote the moving average, viz.

1
S lah — oyl G =123, mo =0,

m]‘ = —
K| e,

where K is the set of integer k satisfying max{1, j—w+1} < k < j, and w is a positive
constant representing the window size. Since m; is defined using the reconstructed
values .T;-, my; is a shared quantity among the encoder and the decoder.

Observe now that if the moving average m; is zero, then x is constant for all
k € K;. The EQL instruction can cover this case. So we may assume m; # 0. We
remark that m; is constant if x; is a linear function of j. In other words, we can check



Take-Yuki NAGAO : DiffMA: A Lossy Encoding of Motion Capture Data for JSON

if the sequence x; behaves like a linear function of j by computing the ratio m;/m;_q
and testing it is one or not. If the ratio is one, then x; is approximately linear. It is

convenient to separate the sign from the difference x4 — x; by writing
Tjr1 — @ = sjlwjp — @], s; = rsgn(aj4n — 1),
where rsgn(x) is the right continuous signum function defined by
1 0<zx
2.1 rsgn(zr) = -
21) gn(x) {—1 otherwise.

Note that for motion data, it is expected that the sign s; does not change rapidly. The
encoder records the NEG opcode only when the sign s; is different from the previous
sign sj_1. The NEG opcode tells the decoder to negate the sign s; for the succeeding
opcodes.

To encode the absolute difference |21 — 2|, we normalize it by

_ lmi gl
J m;
and then scale and quantize z; as
2" 1
(2.2) 0 = {Zfﬁ N §J ,

where n is an integer constant representing the number of bits used for quantiza-
tion, and f is a positive real number representing the scale factor. The encoder then
records the APX(g;) opcode, which tells the decoder to reconstruct the original value
approximately from the quantized value ¢;. The actual reconstructed value is

;o ijgmj
Tjp1 =T; + 55 on

J

in this case.

Observe that we have z; = 1 if z; is a linear function of j and hence the list [z;]
which is linear in j, is encoded into a list [..., APX(k), APX(k), APX(K), ..., APX(k)] with
repeated opcodes at the tail, where x = L%’ + %J is a constant. Note that if we use
the value 8 = 2 for some positive integer k satisfying k < n, then z; = 1 is mapped
to ¢ = 27~ and hence 33;'+1 = x; + s;m;, meaning that the reconstructed value has
no quantization error.

To handle the case where the combination of opcodes EQL, NEG, and APX(g) do not
work for some reason, we use the RAW opcode as a fallback to encode the exact value z;
utilizing a look-up table shared among the encoder and the decoder. In application, the
RAW opcode is used when g; given by (2.2) satisfies ¢; > 2", which roughly corresponds
to the condition |x;11 — 2| > Bm;. The number of patterns for APX(g) is at most 2"
in this case.



TEEAKE H£59% H£1%5 202147H)

2.3. DiffMA encoding. The proposed encoding algorithm is given below in Algo-
rithm 1, which is implementable by various programming languages. The algorithm
uses the opcode APX(q) with ¢ =0,1,...,2" — 1 and thus n = 6 is a reasonable choice
— any single opcode in Table 1 can be mapped to a single ASCII character in this
case.

Algorithm 1: DiffMA Encode
Input: A list z of real numbers to encode, positive real numbers 3, 7, and
positive integers n, w.
Output: A list b of opcodes and a sublist ¢ of x.

1 Initialize b, t, ¢ to be empty lists;
2 s’ :=1;
3 if x is not empty then
4 Remove the head element v from x;
5 Append v to t;
6 v =
7 end
8 while = is not empty do
9 Remove the head element v from x;
10 d:=v—2;
11 Let s be the sign of d, where s =1 if d > 0 and s = —1 otherwise;
12 Append opcode NEG to b if s # §';
13 Let ¢ be undefined;
14 Compute the mean value m of ¢ (set m = 0 if £ is empty);
15 if d =0 then
16 c:= EQL;
17 Di=1';
18 else if m > 0 then
19 q = {%le +%J;
20 f)::v'—i—sqgnm;
21 if ¢ < 2" and |[v— 9| < 7 then
22 | c:= APX(q);
23 end
24 end
25 if ¢ is undefined then
26 c := RAW;
27 Append v to t;
28 U= v;
29 end
30 Append opcode ¢ to b;
31 Append |0 — v'| to ¢;
32 Drop the head element of ¢ if the length of ¢ is larger than w;
33 Set v' := 0 and &' := s;

34 end




Take-Yuki NAGAO : DiffMA: A Lossy Encoding of Motion Capture Data for JSON

The following theorem shows that if we use real numbers instead of floating point
numbers, then there is a formula to describe the encoding result and the output list
of opcodes contains a repeated list at the tail, provided that the input list is linear.
Therefore we can reduce the redundancy of linear data by applying Algorithm 1 in
combination with existing run-length encoding and entropy coding algorithms.

Theorem 2.1. Suppose x = [z;] is a non-empty list of length N that satisfies z; =
aj + v for some real numbers a,y and j7 = 0,1,...,N — 1. Suppose further that
Algorithm 1 is applied to the list x with B = 2* 7 = 0o and k € {0,1,2,...,n}. The
following statements hold:

(1) If « = 0, then we have
(2.3) t = [zo], b= [EQL,EQL,...,EQL].

The list b has length N — 1.
(2) If a # 0, then we have

@0 ol bo | Ty e
where the opcode APX(2"~*) is repeated (N — 2)-times in the formula for b.
Proof. (1) Right before the while loop at line 8 of Algorithm 1, we have
t=[x], b=, L=, z=lx1,70,...], v =1, & =1

In the first iteration of the while loop, we have v = x1,d = v —v' = 27 — 29 = 0 and
EQL opcode is generated at line 16. After the first iteration, we have

t=[zo], b=[EQL], ¢=[0], D=uz1, x=|z323..], VvV=mx1, §=1
Similarly, after the j-th iteration, we have
t = [zo], b= [EQL,EQL,...,EQL],
¢=10,0,...,0] (with length min{j, w}),
b=w;, x=[Tj41,Tjt2,...), vV =x;, §=1

and b has length j. This proves the statement.

(2) In the first iteration of the while loop, we have v = z1,d = «. Since we have
d # 0 and m = 0, the if statement at line 15 and the else if statement at line 18 are
skipped. RAW opcode is then generated at line 26. Hence, after the first iteration, we
have

t=l[zo,z1], £=][a|], =1, x=|r2,23,..], vV =21, s =r1sgna,
where rsgn is defined by (2.1). The list b depends on the sign of a and we have
b= [RAW] if @ > 0, b= [NEG,RAW] if o < 0.

Similarly, in the second iteration, we have

2" 1 "
U = T2, d:IQ*Z'l:OQ m:|a\, q=|—+< =2 .

8 2
Hence the algorithm generates the opcode APX(2"~*). Moreover,
AL |
@:v’—i-sqg;n =1+ {F—FEJ %zml—b—a:x}



TEEAKE H£59% H£1%5 202147H)

It follows that we have
t=[zo,m1], £=]|la|,|a|], ®=z2, z=|[r3,24,...], V =129, 5 =rsgn0C,

b = [RAW,APX(2" F)] if @ > 0, b= [NEG,RAW, APX(2" )] if a < 0

after the second iteration.
Similar arguments show that, after j-th iteration, we have (2.4) and

L=la,...,|af] (with length min{j, w}),
b=w;, x=[xj41,Tj42,...), v ==x;, s =rsgna.
This completes the proof. O

2.4. DiffMA decoding. The decoding algorithm is shown in Algorithm 2.

Algorithm 2: DiffMA Decode
Input: Lists b and t obtained by Algorithm 1 with parameters 3,7, n, w.
Output: A list & of real numbers.

1 Initialize 2,1 to be empty lists;

2 s:=1;
3 if t is not empty then
4 Remove the head element v from ¢;
5 Append v to Z;
6 v =
7 end
8 while b is not empty do
9 Remove the head element ¢ from b;
10 if ¢ = NEG then
11 5= —s;
12 continue;
13 else if ¢ = EQL then
14 ‘ =
15 else if ¢ = RAW then
16 Remove the head element a from ¢;
17 0= a;
18 else
19 Find an integer ¢ such that ¢ = APX(q);
20 Compute the mean value m of /;
21 D=0 + sqéjﬁ”;
22 end

23 Append 0 to Z;
24 Append |0 — v'| to ¢;
25 Drop the head element of ¢ if the length of ¢ is larger than w;

26 v =0

27 end

The following theorem shows that if we use the real number field instead of floating
point numbers, the input list can be reconstructed precisely by the decoding algorithm,



Take-Yuki NAGAO : DiffMA: A Lossy Encoding of Motion Capture Data for JSON

provided that the input is linear. Therefore the proposed DiffMA algorithm can encode
and decode any linear list without a loss of information.

Theorem 2.2. Suppose the same assumptions as in Theorem 2.1. Let b and t be
the pair of lists output by Algorithm 1 from an input list x. Then, the output T of
Algorithm 2 applied to b and t is identical to x.

Proof. We first consider the case where a@ = 0 and decode b and ¢ given by (2.3) using
Algorithm 2. At line 4 we have v = xy and hence, right before the while loop, we have

t=1[, b=[EQL,EQL,...,EQL], o' ==y, & =[zo], s=1.

It is easy to see that each iteration of the wihle loop appends xg to & and the while
loop terminates after N — 1 iterations. This proves the case a = 0.

We next consider the case where o # 0. Suppose for the moment that o > 0. In
this case, we apply Algorithm 2 to

t = [zo,z1], b= [RAW,APX(2" %), aAPX(2"7F), ... APX(2"7F)].
Right before the while loop, we have
t=[r], vV =29, T=[x0], 5=1.

In the first iteration of the while loop, RAW at the head of b is extracted and decoded.
Hence, after the first iteration, we have

t=0, ¢=loll, b=[APX(2"""),APX(2"7"),... APX(2"7")],

(2.5) . , -
0=v' =w, T=|[wg,21], S=r8gn0O
Observe that (2.5) holds for the case a < 0 as well, since the NEG opcode in (2.4) only
affects the sign of s.
From now on our arguments are the same for « > 0 and o < 0. In the second
iteration, APX(gq) is decoded at the head of b, where ¢ = 2"~*. The mean value m of £
satisfies m = || at line 20 and hence we obtain

2n—k2k
(2.6) QA}:U/+SQ§:1:1’1+TO[:.T1+O¢:I2.

Therefore, after the second iteration, we have

t=1[, ¢=][lal,|af], b=[aPX(2"%),aPx(2"7F%),...,aPX(2" %),

0=v' =w9, T=[xg,r1,22], S=rSgNC.

(2.7)

Note that the length of b decreases by one for each iteration. Similar arguments show
that, after j-th iteration, we have

t=1[, ¢=]lal,|al,...,|a|] (with length min{j, w}),
(2.8) b= [APX(2"%), APX(2" %), ... APX(2"®)] (with length N — j — 1),
o=v'=uxj, T=[vo,x1,22,...,7;], S=rsgna.
This proves the case « # 0. O



TEEAKE H£59% H£1%5 202147H)

3. EXPERIMENTS

3.1. CMU Motion Capture Database. As a dataset for evaluation experiments of
the proposed algorithm, CMU’s motion capture database (CMU Mocap Database) is
used in this work. We briefly summarize that database before describing the experi-
ments. The database contains motion capture data recorded by sensors while human
actors perform various motions, including acrobatic actions such as cartwheel or som-
ersault. The original database consists of ASF (Acclaim Skeleton File) file and AMC
(Acclaim Motion Capture data) file. An ASF file is an ASCII encoded file used to store
the structure of a skeletal model, and it is shared among multiple motion capture data
that depend on the same skeleton. An AMC file is an ASCII encoded file that stores
the actual motion capture data. It contains time series data of all the bones specified
in the ASF file [3].

CMU Mocap Database uses a skeleton with 29 bones. Each bone has one to six
degrees of freedom, depending on the bone, and the total degrees of freedom is 62 per
skeleton. The database contains 2514 AMC files. Each AMC file is a time series of
frames containing all the motion data of the bones. The frames are recorded at 120
Hz, and each frame has 62 sets of 32-bit single-precision floating point numbers. The
total number of frames in the database is 4,151,474, and the recorded floating point
numbers amount to 257,391,388 samples. When no compression is applied, the total
size of AMC files is 3,314,159,095 in bytes. Hence, on average, 103 bits are required
for storing a floating point number without compression.

In practice, we often apply well-known loss-less compression algorithms to the data-
base for saving the storage. A common choice of such an algorithm is LZMA. When
LZMA compression is applied to all AMC files separately, the average data rate, the
average length of compressed file per floating point sample, is 24.4+1.9, where the
number after + means the standard deviation.

3.2. Implementation. For evaluating the proposed Diff MA algorithm, an implemen-
tation was created using Python 3. In the current implementation, opcodes encoded
in the list b are mapped to integers by

(3.1) NEG=0, RAW=1, EQL=2, APX(q)=3+gq q=0,1,...,2"—1,

and transformed further to ASCII characters by using the Base85 encoding [1]. Hence,
the list b is represented by a single ASCII string. The numbers in the look-up table ¢
are converted to a JSON array of floating point numbers.

The output of the DifftMA encoder is a JSON object obj such that obj.channels
is an array of channels for the bones (a single channel is assigned to each degree of
freedom of the bone), obj.records is a JSON object holding lists of opcodes and
look-up tables, and obj.params stores some encoding parameters. The component
obj.records.b is an array of Base85 encoded opcodes, and obj.records.t is an
array of look-up tables. For the j-th channel obj.channels[j], its list of opcodes is
stored at obj.records.b[j] and its look-up table at obj.records.t[j].

3.3. An Example of DiffMA Encoded Data. Listing 1 shows an example of an
AMC file containing five frames of motion for a bone named x. The bone x has three
degrees of freedom in this example. The first channel [1,1,1,1,1] is constant with
value 1 for all frames, the second channel [0,1,2,3,4] is a linear function of the frame
number, and the third channel [0.0,0.0952,0.1904, 0.285599, 0.380799] is generated by
jm/33 for j =0,1,...,4, which fails to be linear due to rounding errors.



Take-Yuki NAGAO : DiffMA: A Lossy Encoding of Motion Capture Data for JSON

#!0ML : ASF

:FULLY-SPECIFIED

:DEGREES

1.000000 0.000000 0.000000
1.000000 1.000000 0.095200

1.000000 2.000000 0.190400

1.000000 3.000000 0.285599

MO M MK WM DX~

1.000000 4.000000 0.380799
LisTiNG 1. A Sample AMC File

{
"channels": [ "xO", "x1", "x2" ],
"records": {
"p": [ "2222", "1ZZZ", "1ZYa" 1],
"¢ [ L 11, [ o, 11, [0, 0.0952 1 1]
},
"params": {
"bits": 6, "window": 64, "bound": 2, "class": "DiffMA",
"tolerance": 10, "roundOffset": O, "encoding": "base85"
}
}

LisTING 2. A Sample DiffMA Encoded File in JSON Format

Listing 2 shows the result of Diff MA encoding applied to the AMC file of Listing 1.
As illustrated by this JSON file, the first channel is encoded as the opcodes represented
by the string 2222, which means [EQL, EQL, EQL, EQL]. The look-up table for this channel
is an array [1] of a single number. In this case, the channel data are constant, and the
opcodes show the pattern (1) of Theorem 2.1.

Similarly, the second channel is encoded as the string 1ZZZ, which means

[RAW, APX(r), APX (), APX (k)]

for some constant . The look-up table for this channel is [0,1]. In this case, the
channel data are linear, and the opcodes follow the pattern (2) of Theorem 2.1.
The third channel is encoded as the string 1ZYa, which means

[RAW, APX (k1 ), APX(r2), APX (k3)]

for some constants r;, j = 1,2,3. The look-up table is [0, 0.0952] in this case, and the
generated opcodes are different from the patterns of Theorem 2.1.

3.4. Experiments. Experiments were carried out to examine the effect of the main
parameter 8 (bound) on the quality and the size of DiffMA encoded data. The pa-
rameter n was fixed to n = 6 in all experiments. In all experiments, all AMC files
in CMU’s Mocap Database were encoded separately using the same set of parameters
B, w, and T.



TEEAKE H£59% H£1%5 202147H)

For measuring and comparing the quality of the encoded data, PSNR (peak signal-
to-noise ratio) was computed for each DiffMA encoded file. PSNR used in this paper
is PSNR = —10log;, MSE, where MSE is the mean square error. In general, a higher
value of PSNR means better quality. Table 2 shows the statistics of PSNR for different
values of 8 obtained by encoding all AMC files separately for each value of 8. It is
observed that the mean and minimum values of PSNR behave like linear functions of
log;, 8. This result shows that we can use the parameter 3 to control the quality of

DiffMA.

TABLE 2. PSNR in dB across different values of g (with n = 6,w =
64,7 = 10)

bound mean std  min 1%  25% 50% 75%  99% max

1.0 53.50 17.56 36.10 39.96 49.46 52.86 56.31 66.83 644.07
2.0 46.48 17.71 28.72 33.59 42.59 45.85 49.19 59.50 644.07
4.0 40.17 17.85 23.09 27.81 36.23 39.50 42.78 52.92 644.07
8.0 34.09 18.02 16.33 21.20 30.18 33.42 36.72 47.37 644.07
16.0 28.06 18.18 10.82 15.62 24.13 27.43 30.69 41.31 644.07
32.0 22.07 1834 496 9.86 18.13 21.36 24.67 35.54 644.07
64.0 16.14 1847 -0.89 5.05 12.26 15.37 18.65 29.11 644.07

TABLE 3. Data rate of DifMA output in bits per sample across dif-
ferent values of 8 (with n = 6,w = 64,7 = 10)

bound mean std min 1%  25% 50% 75%  99% max

1.0 37.82 3.62 24.42 3291 36.96 37.70 38.47 43.70 146.13
2.0 20.24 393 1542 1744 1936 19.91 20.67 24.85 146.13
4.0 12.15 4.06 9.65 9.99 11.32 12.01 12.62 14.81 146.13
8.0 10.68 4.07 879 893 9.96 10.60 11.09 12.71 146.13
16.0 10.52 4.07 877 885 9.85 1042 10.91 12.37 146.19
32.0 10.52 4.06 884 893 9.86 1041 10.89 12.35 146.19
64.0 10.59 4.05 9.04 9.12 994 1044 1092 12.32 146.19

Table 3 summarizes the statistics of the data rate of DiffMA encoded AMC files
with JSON output. The data rate here is defined as the number of output bits per
floating point sample:

Number of output bits

Dat te = .
ata tane (Number of input channels) x (Number of input frames)

A lower data rate means a better result. The result in Table 3 indicates that the data
rate improves as the bound [ increases when [ is small, but significant improvements
can not be expected for § > 4. Further refinement of data rate was observed when
the output JSON file was post-processed by LZMA. The result is shown in Table 4.
As a comparison, a well-known floating point compressor zfp [2] was applied to
all AMC files separately, and then PSNR and the data rate were measured. Since
zfp requires floating point arrays as input, a multi-dimensional array was constructed
from the floating point values in all channels from each file, and the zfp compression



Take-Yuki NAGAO : DiffMA: A Lossy Encoding of Motion Capture Data for JSON

TABLE 4. Data rate of Diff MA output in bits per sample across dif-
ferent values of 3 when post-processed by LZMA (with n = 6,w =
64,7 = 10)

bound mean std min 1%  25%  50% 75% 99%  max
1.0 13.74 1.76 8.32 11.28 13.17 13.65 14.19 16.57 62.71

2.0 9.16 1.77 566 7.09 873 917 956 11.01 62.71
4.0 6.25 1.83 347 419 588 6.34 6.66 7.65 62.71
8.0 498 1.8 263 314 461 511 536 6.14 62.71
16.0 4.14 1.85 215 255 3.79 424 451 519 62.71

32.0 341 1.8 179 209 3.08 344 3.72 447 6297
64.0 279 183 150 1.72 248 276 3.02 380 62.71

in lossy mode with tolerance 0.125 was applied to that multi-dimensional array. The
zfp output was post-processed by LZMA. The mean PSNR was 39.719261 + 0.445092,
and the mean data rate was 8.593396 + 1.103044, where mean values were derived by
averaging all AMC files. Let us compare this result with Diff MA. By Table 2, we see
that 99% of data has PSNR larger than 39.96 if DiffMA is applied with 8 = 1. The
corresponding mean data rate is 13.74 +1.76 by Table 4. Therefore DiffMA combined
with LZMA under 8 = 1 requires about 60% larger mean data rate than zfp when
PSNR is needed to be above approximately 40dB.

The data rate of Diff MA with LZMA can be improved by searching for the best
value of § for each AMC file independently, rather than using a single value of 3 for
all AMC files. This optimization can be done by minimizing the absolute distance of
PSNR to a specified value over different values of 5. An experiment showed that if the
target PSNR was set to 40dB and the minimization was carried out over 8 = 2% for
k=0,1,...,6, then the resulting mean data rate was 6.941915 4 2.822336, the mean
PSNR was 40.462124 4+ 17.132779, and the mean value of 5 was 4.853222 4+ 5.009455.
This result means that DiffMA shows the data rate mostly comparable to zfp.

4. CONCLUSION

The DiffMA algorithm proposed in this paper is quite simple and easy to implement
by any computer language. Theorems provided by this paper guarantee that DiffMA
encodes a constant or linear list of floating point numbers into a simple sequence of
opcodes losslessly. When the input list is non-linear, a lossy quantization is applied by
DiffMA. Experimental results showed that by optimizing the output of DiffMA com-
bined with LZMA over the main parameter 3, we could encode CMU’s motion capture
data at the data rate of 6.9 & 2.8 bit per floating point number with PSNR, of 40 + 17
dB. DiffMA can be used in applications for reducing data rate if quantization errors
can be tolerated — building level-of-details of animation is a possible application of
DiffMA. A further study is needed to develop a method to control the errors of Diff MA
and to extend DiffMA to encode quadratic, cubic, and polynomial input losslessly.

5. ACKNOWLEDGEMENTS

The data used in this project was obtained from mocap.cs.cmu.edu. The database
was created with funding from NSF EIA-0196217.



TEEAKE H£59% H£1%5 202147H)

REFERENCES

[1] Robert Elz. A Compact Representation of IPv6 Addresses. RFC 1924, April 1996.

[2] Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Transactions
on Visualization and Computer Graphics, 20, 08 2014.

[3] research.cs.wisc.edu. Acclaim ASF/AMC. https://research.cs.wisc.edu/
graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html, 1999. [Online; accessed
May 16, 2021].

(2021.5.20 =z fs, 2021.7.1 = #1)



Take-Yuki NAGAO : DiffMA: A Lossy Encoding of Motion Capture Data for JSON

— Abstract —

This paper aims to provide a mathematical method for eliminating redundancy from
the recorded motion capture data and making it possible to store various high-frequency
floating point data efficiently in JSON (JavaScript Object Notation) format. The
DiffMA algorithm proposed in this paper is quite simple and easy to implement by
any computer language. Theorems provided by this paper guarantee that DiffMA
encodes a constant or linear list of floating point numbers into a simple sequence of
opcodes losslessly. When the input list is non-linear, a lossy quantization is applied
in Diff MA. Experiments are carried out to examine the relationship between the data
rate and the parameters of DiffMA. The result shows that we can encode CMU’s mo-
tion capture data at the data rate of 6.9+ 2.8 bit per floating point number with PSNR,
of 40 £+ 17 dB by applying DifMA with LZMA.





